بورسیه دکتری برق، الکترونیک، مخابرات،کامپیوتر،فناوری اطلاعات،ریاضی و آمار در بلژیک

ه دریافت‌کننده بورس تحصیلی «بورسیه» می‌گویند. در فارسی گاه به اشتباه به بورس تحصیلی «بورسیه» نیز گفته می‌شود. این بورس‌ها معمولاً برای دوره‌های تحصیلات تکمیلی ( کارشناسی ارشد و دکترا) در نظر گرفته می‌شود. امروزه یکی از راه‌های تامین نیروی انسانی در کشورهای توسعه یافته (که معمولاً با کاهش جمعیت روبرو هستند) اعطای بورس تحصیلی است. یکی از مهم‌ترین این بورس ها، بورس تحصیلی اراسموس ماندوس استبراساس دستورالعمل اداره کل بورس وزارت علوم، تحقیقات و فناوری ایران، نفرات اول تا سوم دانش‌آموختگان دورهٔ کارشناسی ارشد، دانشجویان نمونه کشوری در دورهٔ کارشناسی ارشد برابر با آیین‌نامه انتخاب دانشجویان نمونه با تأیید معاونت دانشجویی وزارت علوم و یا معاونت آموزشی وزارت بهداشت، داشتن کتب تألیفی و یا ترجمه شده در زمینه‌های علمی، دارا بودن دست‌کم یک مقاله چاپ شده در مجله‌های علمی-پژوهشی داخل یا خارج از کشور در زمینه‌های علمی، دارا بودن گواهی مجری بودن در انجام طرح‌های تحقیقاتی کاربردی پایان‌یافته مورد نیاز کشور و نیز مخترعان و مکتشفان که اختراعات و اکتشافات آنان در سازمان پژوهش‌های علمی و صنعتی به ثبت رسیده باشد، برگزیدگان رتبه‌های اول تا سوم جشنواره‌های خوازمی، فارابی و رازی، ارائه‌دهندگان پیشنهاد سبک‌های هنری کاربردی با تأیید از مراجع ذیربط و مربیان آموزشی و پژوهشی می‌توانند در فراخوان بورس تحصیل خارج از ایران ثبت‌نام کنند.

بورسیه دکتری برق، الکترونیک، مخابرات،کامپیوتر،فناوری اطلاعات،ریاضی و آمار در بلژیک

Imec is the world-leading research and innovation hub in nanoelectronics and digital technologies. The combination of our widely acclaimed leadership in

microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy.

As a trusted partner for companies, start-ups and universities we bring together close to 3,500 brilliant minds from over 70 nationalities. Imec is headquartered in Leuven, Belgium and also has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, China, and offices in India and Japan. All of these particular traits make imec to be a top-class employer. To strengthen this position as a leading player in our field, we are looking for those passionate talents that make the difference!

IDLab

The Internet and Data Lab (IDLAB, http://idlab.ugent.be) research group is part of Ghent University, Belgium and a core research group of imec (http://imec.be) , the world-leading research and innovation hub in nano-electronics and digital technologies. IDLab performs fundamental and applied research in research areas such as machine learning and distributed intelligence for IoT.

The job

Recently, imec has unveiled the world’s first self-learning neuromorphic chip based on OxRAM technology. Imec researchers are combining state-of-the-art hardware and software to design chips that features huge computing power while only consuming a few tens of Watts.

In this context, imec is building a team combining the analog and digital hardware design expertise in Leuven with machine learning (deep learning and neuromorphic paradigms) in Ghent. To further strengthen this team, we are looking for 2 PhD students.

Topic 1:

Neuromorphic-accelerated deep learning algorithms and applications

Compared to today’s GPUs, neuromorphic hardware acceleration provides two major advantages, each with a few orders of magnitude: power efficiency and data throughput. Hence, this opens unique opportunities for novel types of applications that are deemed unrealistic today, in particular those applications that apply on-chip self-learning. The goal of this PhD is to develop suitable deep learning architectures and procedures for input data shaping for neuromorphic hardware. We will specifically focus on neural networks with external memory access and self-reconfiguring neural networks for on-chip learning.

Topic 2:

Mapping deep learning algorithms to neuromorphic hardware architecture

Dominant models for neural network architectures and training procedures are highly optimized for training and inference on GPU-based clouds. Neuromorphic architectures leave the traditional Von Neumann architecture and combine processing with memory in a single place. The goal of this PhD is to optimize the mapping of neural network architectures and training procedures in terms of hardware-related metrics such as performance, power and area.

You

We are looking for candidates with a master degree in computer science, analog/digital electronics , embedded systems or microarchitectures. Knowledge of non-volatile-memory (NVM) technology fundamentals, deep learning or mapping algorithms (signal processing or machine learning) on processor architectures (GPU, DSP, FPGA) will be considered a strong plus. Candidates who are close to their master degree are also welcome to apply. Further, candidates are expected to have excellent communication skills, and to be able to work in a multidisciplinary team under a collaborative spirit.

We

We offer a full-time contract with various additional benefits.

Interested?

Candidates should apply with their CV, including a resume of the master thesis and (if applicable) publication list). Please clearly indicate for which topic you area applying.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *